
- - 

~~~~~~~~~~~~~

Thr r e f o r e , n o n — e x t r e m e  po in t s  on the boundary can be

t hough t  of as r e p r e s e n t in g  the mean w a i t i ng  t imes

performance of p r i o r i t y  schedul ing  r u l e s  w it h  a “ m i x t u r e ” of

f i xed  p r i o r i t y  schedul ing  and esca la t ing  p r i o r i t y

scheduling . We now formally define this new rule of

scheduling :

DEFINITION . In multiclass queueing systems , a scheduling

r u l e  is called mixed priority scheduling of

escalating priority and fixed priority , or , MEFP

scheduling in short , if it separates the arrival

classes into several priority levels such that

fixed priority scheduling is applied between

d i f f e r e n t  levels , and escalating priority

schedul ing  is applied w i t h i n  levels .

This  schedul ing  mechanism is shown in F i g u r e  2 . 4 .

O p e r a t i o n a l l y ,  let the n a r r i v i n g  classes be grouped into  m

levels , eacn level i consisting of n~ priority classes. For

each p r i o r i t y  class ( i ,j), there is a con t ro l  parameter  a j j
associated w i t h  i t .  Jobs w i t h i n  the ievei i compete for

serv ice  w i t h  p r i o r it i e s  inc reas ing  w i t n  r a t e  When the

server becomes free , it searches from the top level

downwards to find the first level with at least one nonempty

queue . It then select the job within this level with the

highest priority index for service.
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F i g u r e  2 . 4  ME FP Sched u l i n g  Mechan i sm

Not ice  t ha t  in t h i s  schedu l ing  r u l e , w i t h i n  each level

i , we have n 1— l degrees  of f reedom fo r  con t ro l l i ng  the

p a r a m e t e r s  }- . Thus , the  to ta l  degrees  of f reedom f o r

controlling this scheduling is n—rn.

Kleinrock first studied this limiting situation of

esca l a t i ng  p r i o r i t y  schedul ing  in [K L E I 6 6 I  and cal led it

St r i c t  and Lag P r i o r i t y  M i x t u r e  (SLPM) . He derived mean

w a i t i n g  t imes  b e h a v i o r  f o r  M/M/ l  q u e u e i n g  systems und er  SLPM

scheau l ing . We note  ~ha t h is  r e s u l t s  f o r  MEFP (SLPM )

schedul ing  a re  also t r u e  fo r  M/ G/ l q u e u e i n g  systems fo r  the
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reasons  g ive n in Section 1.3 tha t  h i s  r e s u l t s  of e scala t ing

p r i o r i t y  schedul ing  can be extended f r o m  M/M/ l queueing

systems to 14/Gil systems .

We now summar i ze  the mean ings  of the boundary  po in t s  of

the f eas ib le  p e r f o r m a n c e  space of mean w a i t i n g  t imes under

escala t ing p r i o r i t y  schedul ing :

(a )  Ex t r eme  po in ts  on the bounda ry  represent  mean

w a i t i n g  t imes of p r i o r i t y  classes under  f i x e d  p r i o r i t y

scriedul ing .

(b )  Non— ext reme points on the bo.. n dary  represen t  mean

wa i t ing  times of p r i o r i t y  classes under MEFP scheduling .

Before we conclude this chapter , we remark that since

boundary points  a re  l i m it i n g  behav io r s  of escalat ing

priority scheduling , we can uodify Theorem 2.4 to obtain a

set of value s for escalating priority scheduling that can

approximate the pe r fo rm ance  of f i x e d  p r i o r i t y  and MEFP

scheduling . This is as fol lows :

Given a set of mean waiting times performance of either

fixed priority or MEFP scheduling , they cor respond to a

boundary point of the space defined by (1.3.2) and (2.1.4).

wnen we solve the quadra t i c  equation a~ X 2 
4- b~ X + c j = 0

fo l lowing  Theorem 2 . 4 , instead of hav ing  a un ique  pos i t ive

roo t, we will have a unique non-negative root. In this

case , ( 2 . 2 . 1 0 )  can not be d i r ec t l y appl ied to de t e rmine  the
value s of { a~~} because the denominator of the expression in
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( 2 . 2 . 1 0 )  is ze r o .  However , if we r eca l l  f r o m  ( 2 . 2 . 1 1 )  tha t

is d e f i n e d  as the  r a t i o  ~~~~~~~~ the n r 1=0 means that the

value ~~/a~÷1 must approach infinity . Thus , in order to

obta in  a set of parameters such that a1/a14-1-~~, we can

replace r~ =u by r 1=r where  € is a very small positive

q u a n t i t y  so that  o~ /a~ +i = l/€  w i l l  be l a r g e .  Using this

substitution , we can then obtain a set of positive ri ’s and

t h e r e f o r e  ( 2 . 2 . 1 0 )  of Theorem 2 . 4  can be used to obtain  a

set of value s 
~ 

~~~~

. ). Therefore, using this set of values

for  the cont ro l  pa ramete r s  in escalating priority

schedul ing , f ixed  p r i o r i t y  and MEFP scheduling s can be

approximated .
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CHAPTER 3

OPTIMIZATION OF ESCALATING PRIORITY SCHEDULING

- 

- 

3 .0  In t roduc t ion

In Chapter  2 , we showed tha t  esca la t ing  p r i o r i t y

scheduling can cover the spectrum of scheduling from FCFS

schedul ing to f i x e d  p r i o r i t y  schedul ing  by a d j u s t i n g  the

control  paramete rs  t ~~ I ari d that  the feas ib le  p e r f o r m a n c e

space of the ELW 1)’s is defined by (1.3.2) and (2.2.1). In

th is  chapter , we present  a lgo r i t hms  fo r  de t e rmin ing  the

values  of {E [ W ~ J }  to opt imize  v a r i o u s  cost f u n c t i o n s .  We

then can use the algorithm presented in Theorem 2.4 to

obtain the values of the control parameters 11 a~ } in

escalat ing p r i o r i t y  schedul ing to g ive  the values  of mean

waiting times determined from these optimizing algorithms .

We wi l l  develop o p t i m i za t i o n  a l g o r i t h m s  fo r  two genera l

cost ob jec t ive  f u n c t i o n s .  Each of these general  f u n c t i o n s

has several special cases of interest. Two new variables ,

s . and c., are used in these general functions. s. is a
1 1 1

constant  for  class i and its meaning differs for each of the

v a r i o u s  cases. c~ represents the appropriate cost of each

job in class i for the objective function being used . The

two general objective functions are the foiiowing :

m( a )  M i n i m i z e  I X kck ( E [ W k l — s k ) , ( m > l )
k= 1
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and (b) Minimize max {
~ k

c
k
(EIW kJ— sk

); l<k<n}.

We w i l l  now present  some of the i n t e r e s t i n g  special

cases of the general  ob jec t ive  functions.

Case 1. For objec t ive  f u n c t i o n  (a )  w i t h  m l  and

we have :

n
Minimize  I ~k Ck k ~~~~~5k f l ,

k=i

where c1 is the cost of the t ime spent in the system per

• un i t  t ime for  each job f rom class i. This  objec t ive

f u n c t i o n  m i n i m i z e s  the expected total  cost of the average

time jobs spend in the system (waiting plus service time)

Case 2. For the objec t ive  f u n c t i o n  (a )  w i th  m=l and s1=O

for  all  i , we h av e:

n
M i n i m i z e  I ). c E [ W  1,

k=i k k  k

where c1 is the cost of w a i t i n g  per u n i t  t ime fo r  each job

from class i. This ob jec t ive  func t ion  min imizes  the

expected total cost of the averag e t ime jobs spend w a i t i n g

for  service .

Case 3. For the objective function (a) with m=2 and

s1 —E (S1j, we have :

n 2M i n i m i z e  I X kck ( E [ W k] + E [ S kJ )
k=l
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where c 1 is the cost of the time spend in the system per

u n i t  t ime squared fo r  each job f rom class i. This ob jec t ive

f u n c t i o n  m i n i m i z e s  the expected total cost of the square  of

the average t ime jobs spend in the system .

Case 4. For the objective function (a) with m=2 and s~~ 0 for

a ll i , we have:

2Mi n i m i z e  I N kckE
~~~k

)
k=i

where  c~ is the cost of w a i t i n g  per unit time squared for

each job f r o m  class i. This objec t ive  f u n c t i o n  m i n i m i z e s

the expected total  cost of the square of the average time

jobs spend w a i t i n g .

Case 5. For the objective function (b) , if we i n t e r p r e t  s~
as the slack time allowed for jobs from class i, then

E [W
~
I— s 1 is the expected lateness of a job , and c1 is the

cost per unit time for each job late in class i. Thus this

objec t ive  f u n c t i o n  min imizes  the expected lateness cost of

the average  lateness of all  jobs in the class having the

max imum expected lateness cost.

From optimization theory, optimal solution(s) exist for

any closed and bounded feasible solution domain. Since the

feas ib le  pe r fo rm ance  space of mean w a i t i n g  t imes of

escalating priorit y scheduling is an open space defined by

(1. 3 . 2 )  and ( 2 . 2 . 1 ) ,  we w i l l  add the boundary  points  of t h i s

space to the solution domain to guarantee that optimal

solution(s) exist. Thus , for our optimization problems , the
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constraints are (1.3.2) and (2.1.4). For these problems, if

the optimal solution(s) obtained falls on a boundary, we can

use the modificatio n of Theorem 2.4 described in Section 2.3

to ob ta in  a set of { 
~~ 

I that will approximate the optimal

mean waiting times.

Iii the following sections , Section 3.1 discusses

optimization of (a) with m 1  and (b) and Section 3.2

discusses the o p t i mi z a t i o n  of ( a )  w i th  m > l .  In Sect ion 3 .3 ,

we present a series of examples to illustrate the

op t imiza t ion  t echn iques  descr ibed in Sect ions 3.1 and 3 . 2 .

3.1 Opt imiza t ion  w i t h  L inear  Cost Func t ions

In th i s  sect ion , we d i scuss  o p t i m i z i n g  the f o l l o w i n g

objective functions:

n
(3 . 1.1) M i n i m i z e  I ~ c ( E [ W kl_ s l )

and

(3.1.2) Minimize max [\kck(E[Wk~
-.sk); l<k<n}

subject  to

(1.3. 2) ~1E [ W 1J + r 2 E [ W 2 ] + . . .  + P~~ E [ W ~~] = p W ,

and

( 2 . 1 . 4 )  YIc N I P k E [ W k ] > ( l — p )  ( I 
~k ”~

1 1 ~kE l  — k c l  k~~I 
k

We f i r s t  a i scus s ( 3 . 1 . 1) .  For t h i s  o b je c t i v e  f u n c t i o n ,

we have a bona [ide linear programming problem . Thus , an

optimal solution can be obtained by the simplex method .

From the theory of linear programm ing, if a single optimal
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solut ion ex is t s , it must  occur  at an e x t r e m e  po in t .  When

multiple optimal solutions exist , they must be convex

combina t ions  of op t ima l  e x t r e m e  po in t s .

A so lu t i on  to t h i s  o p t i m i z a t i o n  problem can be obtained

di r e c t l y  w i t h o u t  us ing  the simplex method because we know

that  ex t reme points  represen t  f i x e d  p r i o r i t y  schedu l ing .

We recall from Theorem 1.4 that for fixed priority

scheduling , to minimize

n
(1.3.7) I \kckElW kl ,k=1

the opt imal  o r d e r i n g  of priority classes follows the

descending order of p c .. If for some i and j ,  p . c . p . c . ,

then multiple optimal solutions exist and the ordering of

these two classes is u n i m p o r t a n t .

Now , since the objective function (3.1.1) can be

rewritten as

n n n
I ~. c ( E [ W kJ _ s k) = I X ckE [ W

kJ — I
k=l k k  k=i k k=i

optimizing (3.1.1) is equivalent to optimizing (1.3.7) when

the two problems have the same solution domain. This is

because the last summation te rm is a cons tan t  independent  of

the E [ W i ) ’ s.

Even though the solution space for optimizing (3.1.1)

contains points othe r than the extreme points that

correspond to fixed priori ty scheduling , we can tempora r il y

restrict ourselve to this set of e xt r e m e  poin ts  to obtain
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initial optimal solution(s) . Under this condition , we can

use Theorem 1.4 to obtain  i n i t i a l  opt imal  s o l u t i o n( s)  and

then take convex combinations of all the initial optimal

s o l u t i o n ( s )  to obtain  mul t ip l e  optimal so lu t ions .  A summary

of the above d iscuss ion is the fo l lowing :

To optimize (3.1.1), first order the p c ’s in

descending sequence .

Case (a): If no two ~~~~~~ are equal , then the optimal

solut ion to (3.1.1) is unique . Denoting the class indices

for the descending sequence of p .c. as 1’ , 2’ , ..., n ’, then

from Theorem 1.3, we have

(3.1.3) E [W~ .]* = (1 p) W / 
~~~~~i — l ’~ 

( 1— c 1 1) ,

Case (b) : If some of the ~1c~~’ s are  equal , then fo r  all

— 
non—ascending  o r d e r i n g s of ~~c1, we first use (3.1.3) to

obtain all the optimal solutions within the domain of fixed

priority scheduling . Then , the solutions to (3.1.1) are the

set of all convex combinat ions of the i n i t i a l  optimal

solut ions .

Ne xt , we discuss  o p t i m i z a t i o n  of ( 3 . 1 .2 )  subject  to

(1. 3 . 2 )  and (2 . 1 .4 ) .

To solve th i s , we employ the fo l lowing  a rgumen t :  Given

an ob jec t ive  f u n c t i o n  f ( x )  w i th  solut ion domain X , instead

of ~earchir~ directly th rough  the whole domain  of X for  the
min imum , we decompose X into several  subregions  and f i r s t
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de t er mine  the m i n i m u m  w i t h i n  each s u b r e g i o n .  Then , the

op t ima l  s o l u t i o n  to the  o r ig i n a l  pr 1ble rn is the  s o l u t i o n  of

the sub~ pact.~ tr i at  has the sma l l e s t  v a l u e  fo r the  o bj e c t i v e

func tion among trie minimum values found for all the

subspaces. Mathematically, we have :

(3.1.4) mm f(x) = mm mm f(x) if X = U X .
xE X i~ I xEX . I E I  1

1

Now , for our optimization problem (3.1.2), we decompose

our solution space R define d by (1.3.2) and (2.1.4) into n

subregions R
1
, R 2, - . . ,  R such that each region R 1 is

defined by (1.3.2) , (2.1.4) and the following set of n—l

c o n s t r a i n t s :

(3.1.5) x .c.(E~ W. 3—s. ) 
~ 

X
kck

(E
~~~k

l_ s
k

) f o r  a l l  k~~i.

We note that for each i , (3.1.5) is a different set of

linear inequalities and it means that for each point W

( E [ W 1] 1 E [ W 2 J , . . . , E [ W ~ 1)  in R
~~
, if we consider the values

~1c 1(E [W 11— s 1) 
‘ ~

‘2 c2 (E [W 2]—s 2) , •., 
~

. c ( E  [W ] -S ) , then

. . c ( ~~[W . 1 — s .) is the l a r g e s t  among them . That  is , f o r  each
1 1  1 1

WE R .,
1

max {
~~k

ck
(E[w

k
]_5

k
) ;
~~1k1n

} =

Now , s ince  for  each po in t  w in R , if we consider the values

~1
c 
1
(E LW 

1
]—s 

1~ 
~2
c 
2

(E ~W 2] -s , •.., ~~c n~~ 
[W I-s 

n~ 
then one

of them must be the largest . If , say , \.c .(E[W .J—s .) is the
J J  J J

largest among the above , this means that the point W must
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l ie  in reg ion R.. Thus , each point in R must lie in one of

the regions R1. This proves that

R ~
‘ R - R

l~~~~’2

We now define f(W) = max [Xkck(E[Wk]—sk); l<k<n} .

Then our minimization problem (3.1.2) becomes mm f(W) .
wE R

From (3.1.4), this problem is then equ iva len t  to m m m m
l~ i�n W E R .

1f ( W ) , whi ch is

(3.1.6) mm mm max iX kck(E[W kl s k); l<k<n} .
1~ i~n WER~

Since fo r  each point  W w i t h i n  r eg ion  R~ , we have

max {Xkck(E[w kI—s k);l<k ,< n }  X 1c., ( E [ W ~ 1— s ~ ) ,

s u b s t i t u t i n g  th i s  into ( 3 . 1 .6 ) ,  w e obtai n

m m m m ~ . c . ( E [ W . ] — s • ) .
- 1 1  1 1

1�i~n R.
1

The above shows that  we can solve (3 . 1 .2 )  by the

following two—step procedure:

Step (1): For each i , lKi<n , solve the following :

(3.1.7) Minimize ~ . c .(E[W ]—s .)
i i  1

subject to (1.3.2), (2.1.4) and (3.1.5).
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Step (2): Select , among all the optimal solutions obtained

f rom step ( 1 ) ,  the one w i t h  the m i n i m u m  ob jec t ive  va lue .

This solut ion is then the opt imal  so lu t ion  to the o r i g i n a l

problem (3.1.2).

We r e m a r k  that  in the step (1) above , n l inear

programming problems need to be solved , each one using a

subregion of the original solution space defined by the

cons t ra in t  sets ( 1 . 3 . 2 ) ,  ( 2 . 1 .4 )  and ( 3 . 1 . 5 ) .  For each

d i f f e r e n t  i , ( 3 . 1 . 5 )  d e f i n e s  a d i f f e r e n t  reg ion R1. It is

possible that  under the p a r t i t io n  used , some subregions  may

be empty so that  f eas ib le  solut ions fo r  these problems do

not ex i s t .  However , since at least one of the regions R~ is

always nonempty, a solution to our original problem exist.

Before we conclude this section , we point out the

fo l lowing  in t e re s t ing  observa tion:  For the optimization of

(3.1.2), if the optimal solution f a l l s  in the interior of

the solut ion domain , then the fo l lowing re la t ion  must  hold :  
7

( 3 . 1 . 8)  x ic i ( E [ W i
]_ s

i) = X 2c 2 ( E [w 2 ]_ s 2 ) = ...=x ncn ( E [ W n]_ s n ) .

This is because if W* = ( E [ W 1]* , E [ W 2 1* , . . ., E [W ~ ]*)  were

an optimal solution but did not satisfy (3.1.8), then if we

rename the class indices as 1’ , 2’ , ... , n ’ such that

( 3 .1 .9 )  x 11 c 1 1 ( E E W 1 1 ] — s 11) > x 2 1 c 2 1 ( E [ w 2 1 J — s2 1)

-~~ 
... .�~ 

\n , cn ,~~~~~n ,
~~~~n s ) ,

_____________________ - _ _
~~~1~~~ ~~~~

-
~~~~~~~
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th en at least one of the above “ > “ must have strictly

grea t e r  r e l a t i o n  “ > “ . Let class i’ and i+l’ be the smallest

indices such tha t

X
~~

, c
~~~

( E [ W 1 . J — s ~~
i )  >

That is , we have

x 11 c1, ( E [ W 11 ]—s 1
) = x 21 c2, (E[W 21 ]—s 21)

= . . .

Then , from the conservation law of mean waiting times ,

i t is possible to f u r t h e r  reduce  the E [W k II ’ s, l < k < i , by

inc reas ing  E E W k , ]
~ 

i + l < k < n  so that  x 11 c 1 1 ( E [ W 1 1— s 11) w i l l

be decreased . This contradicts our assumption that W~ is

op t ima l .

We note tha t  the above a rgumen t  does not app ly to the

boundary  points  because if we try to reduce the values of

some of the E[W .,J ’s, then they may be forced off the

boundary  and become i n f e a s i b l e .

The above shows that if we temporarily neglect the

boundary constraints (2.1.4), then (3.1.8) can be used to

obtain a solution to the relaxed problem (3.1.2) with only

the constraint (1.3.2). Thus , for our original problem ,

instead of fo l lowing  the aforementioned procedure of solving

n linear programming problems , we can first solve (3.1.8)

and (1.3.2) to obtain a Set of {E[w1] ) ,  and then  test to see

if the constraint set (2 .1.4) is satisfied. If the solution
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does s a t i s f y  the c o n s t r a i n t  set ( 2 . 1 . 4 )  , then i t  is an

op t imal  so lu t ion  to our  o r i g i n a l  p rob lem.  However , if some

of the cons t r a in t s  in ( 2 . 1 . 4 )  are  v io la t ed , then we mus t  use

the original procedure to obtain a solution.

We now return to the problem of solving (3.1.8) and

(1.3.2) for (E [W.]}. First , let the common value of (3.1.8)

be t , so that

E [ W~ ] = s
~ 

+ t / X.c. .

Substitute this into (1.3.2), we have

n
I p k (s k + t/xkck) =

k= 1
n n

or , t = (p W — I ) / ( I l/p~c~ ) .
k=l k=l

Thus , we have

n n
(3.1.10) E[W.} = S .  + ( pW — I p~ s~~)/(X.c. I1 1 k=l 1 1k=l

This is then the solution to the relaxed problem

(3.1.2) with constraint (1.3.2) only. If it also satisfies

(2.1.4), then it is the optimal solution to (3.1.2).

However , if it f a i l s  to satisfy all the inequalities in

(2.1.4), then we must use our original solution procedure.

We now i l lu s t r a t e  t h i s  w i t h  a two—class  p r io r i t y

queueing example.
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E(w~
)

- 

~.E 1w ]
0

Figure 3.1 Minimize max (
~k

ck (E[W
~
)—Sk); k l ,2}

In Figure 3.1 , our solution space for optimization is

the l ine segment Q 12Q~~~ . Using (3.1.10) and the given

positive values for and s2, we have:

p
~~— 

p 1
s
1 — p

2
s2

E L W 1 81 + 1 
_ _ _1 X iC i ( p c + p 2c )

And , —
— — r~ S

~~~~~~~ 2 2
E [ W 21 s2 + 1 1 -

X c (——- 4- )2 2 p1
c
1 p2

C
2

Thus , if W = ( E [ W 11,  E I W 2 I )  l ies in between Q 12 and

then i t  is an opt imal  so lu t ion .  However , if it does

not , then we need to use the two—step procedure that we

descr ibed e ar l i e r .

In this example , the point S is defined as (s1, 
~ 2~

-

It  is i n t e r e s t i ng  to note the f o l l o w i ng  behavior  of the

objective function: At the point S, E[W 11 = s1 and E [W2 ) =

77
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so tha t  the objec t ive  value  is 0. At point  W , the

objective function assumes some positive value , say b, so

that

max tx kc (E[W kI SQ ; k l ,2) = b.

Thus , the contour  of al l  poin ts  s a t i s fy i n g  the above

equat ion is the two “half lines ” passing through the point

W that  are parallel to the two axes.

3 .2  Op t imiza t i on  w i t h  Non l inea r  Cost Func t ions

In this section, we discuss priority scheduling

subject to non—linear cost of delay . Our problem is the

fo l lowing :

( 3 . 2 . 1 )  Min imize  
k l k k  

( E [ W ~~ -~~~~~ )m (m>l)

subject  to

( 1 . 3 . 2)  p 1E L W 3) + p 2
E [ W

2
) + . . .  + p~~E [ W ~~] =

and

( 2 . 1 . 4 )  VICN I O k E [ W k ] > ( 1 — p ) (  I P k ) W / ( l  I
kEl 

— kEl kEI

First we discuss the case when m=2 . With a quadratic

objec t ive  f u n c t i o n  and l i nea r  c o n s t r a i n t s ,  we have a

quadratic programming problem .
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Th i s  quadratic constrained optimization problem can be

solved based on a theorem developed by Kuhn  and T u c k e r

[KUH N5 1] , , wh i c h  w e will now state in the following . (The

proo f of th i s  theorem can be found in most non l inea r

programming books.)

THEOREM 3.1. Consider the problem

m a x i m i z e  Zo = f ( Z 1, Z 2, . . ., Z~~)

subjec t  to

(-i ) ~ j~z~~’ L 2~ ~ 
Zn) = 0 for i = l , 2 , . . . ,L ,

( 2 )  r i . ( Z 1, Z 2, - .., Z~~) > 0 for j = 1,2,.. .,m ,

where f , g 1, h1, a re  all continuously

differentiable functions. Then ,

Z~ = (Z 1, Z 2, ..., Z~ ) can be an optimal

solution to the non—linear optimization problem

only if t he re  ex is t s  £ * m m u l t i p l i e r s

x X 2’ - s - ’  x2 ,  and y 1, y 2 ,  - 
~~~ ~

‘m such

that  the fo l l owing  condi t ions  a re  all satisfied :

2 ~g.  m
( 3 . 2 . 2 )  ~~~_ ( Z *) — I x .  - 

_
~
_

~~~(z* ) — I y. = 0 (1~~k~~n)
i=l 1 

~~k j =l ~ k

( 3 . 2 . 3 )  g 1 (Z *) = 0 for i = 1, 2, ~~~~~

( 3 .2 .4 )  h .  ( Z *)  > 0 f o r  j = 1, 2, ...,

(3.2.5) y~ h~ (Z*) = 0 f o r  j = 1, 2, . . . , m ,

(3.2.6) y
~ 

K U for j 1, 2, .. . , m.

79 

‘
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -
~~~~~~~~~~~~ 

-



Furthermore, these conditions (called Kuhn—

Tucker  cond i t i ons )  are also s u f f i c i e n t  if  the

following are satisfied :

(3.2.7) f(Z) is concave,

(3.2.~~) gjZ) is linear , for all i = 1, 2, . . . , 2 ,

(3.2.9) h .(Z) is concave,  fo r  all j = 1, 2 , ..., m .

In order to apply th is  theorem , we use the fo l lowing

m a t r i x  no ta t ions :

Let A = ( A i j )  be a (2 ’~— 2 )  x n m a t r i x  de f ined  by

(3.2.10) Aij = p. if 0 K ( i  mod 2~~) < 2
3_ i

,

0 if 2
3_ i 

K ( i  mod 2~~) < 2~~.

where  the no ta t ion  “ x mod y ” is used to represent  the

remainder  of x d iv ided by y .

Let b = (b 1, b2 ,  - .., b ) T be defined by
2 —2

n n
(3.2 .11)  bi = (1 — p ) w ( I A . k ) / (1 — I A k ) .

k=1 1 k=l 1

also , denote W = (E [W 1] ,  E [ W 2 ] ,  ..., E [WnJ) , and

= 
~l’ ~2 ‘ - - ‘ ~n

Then , if we let

( 3 .2 . 12)  g ( W )  = ~T w — p ~~, and
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( 3 . 2 . 1 3 )  ( )  = A W — b ,

we see that constraints (1.3.2) and (2.1.4) can be w r i t t e n

as g ( W )  = U and 1(W) > U respectively.

Now , in order  to change our  m i n i m i z a t i o n  problem to a

maximization problem , we define f(W) to be the negative of

our objective function. That is , we let

2
= — 

k—l ’
~ 

ck ( E [ W k) — 5k -

If we denote

T
S = (s i, s2 ,  - .. , s~~)

and let D = ( D i j )  be an n x n m a t r i x  d e f i n e d  by

D i j  = — 
~~c1 

- 

i f  i =

U if i ~~j.

then , f(W) can be written as

( 3 . 2 . 1 4 )  f ( W )  _ S r
D S  - 2

T
D W  + W

T
D W

F rom the d e f i n i t i o n s  of the f u n c t i on s  f , g ,  h above , i t

is eas i ly  seen tha t  c o n d i t i o n s  ( 3 . 2 . 7 )  t h r o u g h  ( 3 . 2 . 9 )  a re

satisfied . Thus , the Kuhn—Tucker conditions (3.2.2) through 
7

( 3 . 2 . 6 )  become s u f f i c i e n t  in p r o v i d i n g  op t imal  so lu t ions .

We will now derive these Kuhn—Tucker conditions for our

problem and then see how the solution of this set of —

relations can be obtained by applying a modified linear
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prog r amming method using the a r ti f i c i a l  v a r i a b l e  technique .

First , substitute (3.2.12) through ( 3 . 2 . 1 4 )  in to

( 3 . 2 . 2 ) ,  we have :

2 S T D ÷ 2 W T D _ X E
T L A O

Let x = x1 
— x 2 be the d i f f e r en c e  of two non—negative

var iables  and let y~’ 
= — ~~, su b s t i t u t~ ng into the above

equation and taking the transpose, keeping in mind that DT =

D , we obtain

2 D W  - p x 1 + p x 2 + ATY 1 = 2 D s .

Denote x ’ = (x1, x 2) , then in m a t r i x  no ta t ion , the ab ov e

equation becomes

( 3 .2 .15)  ( 2 D I A T 
) ( I ~~~

‘ I y ’ ) = 2 a~ .

Next , subs t i tu te  ( 3 . 2 . 1 2 )  into ( 3 . 2 . 3 ) ,  we have

(3 .2 . 16) T w = p
~~
.

Then , subs t i tu te  ( 3 .2 . 1 3 )  into ( 3 . 2 . 4 ) ,  we obtain

(3. 2 .17)  A W > b.

Now , if we let T = h ( W )  = A W - b be non—negat ive  slack

var i ab les  for  the i nequa l i t i e s  ( 3 . 2 . 1 7 ) ,  then ( 3 . 2 . 5 )

becomes

82 
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y h (W) = y .T . = — y ’ T = 0
J J 3 )

or , equ iva len t l y ,

(3 . 2 . l~~) y~ T . U , f o r  j = 1, 2 , . . . ,

We r e c a l l  t h a t  in our  p rob lem of d e t e r m i n i n g  op t imal

W = (E[w~ J , E [w 2 J ,  ..., E [ W n ] ), each EIW~~] is r e q u i r e d  t o be

p o s i t i v e .  Also , x ’ is defined to be non—negative. By the

d e f i n it ion of ~~~
‘ ano (3.2.6), 

~~~~
‘ is also non—negative.

Thus , we have

( 3 . 2 . l ~~) v~, x ’ , ~~~
‘ , T > 0.

Therefore , the Kuhn—Tucker conditions for our problem

can be summarized as (3.2.l5) through (3.2.19).

To solve the simultaneous equations and inequalities

(3.2.15) through (3.2.19), we apply the artificial variables

techn ique , and in t roduce  to each l i n e a r  e q u a l i t y  and

“ g r e a t e r  or equal” constr aints a non—negative artificial

variable to formulate a pseudo minimization problem with the

sum of introduced artificial variables as the objective

function. According to this technique , if the minimum value

of this pseudo objective function is zero (which indicates

that all the introduced artificial variable have vanished) ,

then the ori ginal problem is feasible , and an initial

optimal solution can be directly obtained from the solution

of the pseudo optimizat ion problem (c.f., any standard
l i nea r  p r o g r a m m i n g  book)  -
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For our problem of seeking an optimal so lu t ion  to

( 3 . 2 . 1 4 )  wi th  cons t r a in t s  ( 3 . 2 . 1 5 )  t h r o u g h  ( 3 . 2 . 1 9 ) ,  we w i l l

now t e m p o r a r i l y  neglect  (3 . 2 . 1 8 )  and ( 3 . 2 . 1 9 ) ,  and add

n + 1 + (2 fl 
— 2 )  = 2n + ri — 1

ar t i f i c i a l  va r i ab les  R 1 t h r o u g h  R to c o n s t r a i n t s
2 +n—l

( 3 . 2 . 1 5 ) ,  ( 3 . 2 . 1 6 )  and ( 3 . 2 . 1 7 )  and obta in  a m i n i m i z a t i o n

problem in the fo l lowing :

n-i
M i n i m i z e  I

k= 1

subject  to ( 3 . 2 . 1 8 ) ,  ( 3 . 2 . 1 9 )  and

(3.2.20) (2DI_ p ,P IA TI U I I,o ,U) (~ I~~’Iy.’ I~~I~~) = 2Ds ,

(3.2.21) (~ T 1 0,01 0 1 0 1 0 ,1,0) (~ I~~ Ii’ IT I~ .) = pW ,

(3.2.22) ( A )  O , V j O ) — I .I O , O ,I)  ( x ’I I ’ J T J R )  = b .

Except fo r  the cons t r a in t  ( 3 . 2 . 1 8 )  , the constraints are

linear. The simplex method can be used with a slight

m o d i f i c a t i o n  to solve th i s  problem.  F i r s t , t e m p o r a r i l y

neglect ( 3 . 2 . 1 8 )  and f o r m u l a t e  a l inea r  p rog ramming  pr oblem .

Then , we use the simplex method in solving this problem with

the add i t iona l  requ i rement  tha t  fo r  every  i t e r a t i on  of

g e n e r a t i n g  a new basic feas ib le  so lu t ion , we check ( 3 . 2 . 18 )

to be sure that  only one of the two va r i ab les  Y~~’ and T~ a re

a basic va r i ab l e .  That is , if one of the two va r i ab les  are

a l ready  a basic v a r ia b l e , then the other va r i ab l e  cannot  be

the v a r i a b l e  e n t e r in g  the basis unless  the other  var iab le  is
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the v a r i a b le lea v i n g  the basis. This guarantees that the

solution obtained satisfies (3 .~~.18).

We have now (:(mp U tely solved our quadratic

optimization problem. It shou ld  be no ted , however , that the

above solution procedure involves solving a programn .~ng

problem with a large number of variables , in particular ,

when the number of priority classes is large. An

al te r n a t i v e  s o l u t i o n  method is described below that may be

simpler than using the above algorithm . This solution

method is particularly useful when the optimal solution lies

in the inte rior of the feasible performance space.

In the f o l l o w in g ,  we discuss the objective function

(3.2.1) in general rn not restricted to being equal to two),

and d e s c r i b~: an iterative method for solving the

optimizat ion of (3.2.1). This iterative method can be

simply stated as follows :

F i r s t , solve the problem of optimization with some of

the constraints relaxed (temporarily neglected) . After a

solution to the relaxed problem is obtained , check to

determine if this solution satisfies the neglected

constrain ts. If all the constraints ~ re  s a t i s f i e d, t h e n

this is the optimaf solution to the original problem.

How ever , if some of the c o n s t r a i n t s  a r e  v io la t ed , then the

violated consf-raints are added and the problem is solved

again. This process is repeated until a solution satisf ying

all  co n s tr a i n ts ;  is f o u n d .

. 7 -
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f t .  
—

To solve our optimization problem (3.2.1), we first

r e l ax  all  the inequality constraint (2.1.4) and only keep

the c o n s t r a i n t  ( 1. 3 . 2 )  - This relaxed constraint

op t i m i z a t i o n  problem can be solved us ing  L a g r a n g e ’ s

m u l t i p l i e r  method .

n fl 
—

Let L I X c ( E [ W  ] — s  ) m _ 2 (  I p E [ W  ] — p W )  -

Lag rang e ’ s necessary  cond i t ion  fo r  o p t i m a l i t y  is:

‘3.2.23) ~~~~~~ = 0 , and

(3.2.24) 
~~E~~~~~~

j7-= 0 for l� k�n .

Now , for each i, i= 1, 2, . . .,  n ,

~~
IJ

~~
E[W

k
] = m X

i
cj( E [ W

i
]_s

i
)
m
~~~

_ 2 p
j

se t t ing them equal to 0 , we ob ta in

( 3 . 2 . 2 5 )  E [ W . ]  s
~ 

+ ( 2 / m ~~~~ 
) l/ ( m — l )  

( 1< i < n)

The f i rs t  Lagrange  c o n di t i o n  ~L/~~2 = 0 requires

n
(1. 3 . 2 )  1 p E [W ,~} = p W .

k=i k

Substitute (3.2.25) into the above equation , we get

1 1

p s ) + (!) m—i ( ~ p / (p. c ) m l ) = p
;~ -

k=l m k=l

Thus , 
1 1

= 
k k  / 

k=l k (
~ kck ) )
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